Math 42 Midterm 4 Review

[0] All question types from quiz 4 may appear on midterm 4.
[a] Solve a triangle given 1 side, and 2 other pieces of information (2 other sides, 1 other side plus 1 angle, or 2 angles) - there may be no possible triangle, exactly 1 triangle, or 2 triangles (in which case, you must solve both triangles)
[b] Given 1 side and 1 angle not across from each other, determine what lengths for another side would give 0,1 or 2 triangles
[c] Find the area of a triangle given 2 sides, and either the angle between them or the $3^{\text {rd }}$ side
[1] A car travels along a north-south road. A house sits off the side of the road.
Originally, the house is on a bearing of 24° from the car.
After the car has travelled 175 feet, the house is then on a bearing of 108° from the car.
Find the original and final distance between the car and the house.
[2] A 15 foot flagpole is mounted vertically (to the Earth) along a sloped road which has an angle of inclination of 12°.
A cat sits on the road, 12 feet uphill from the base of the flagpole.
Find the angle of depression from the top of the flagpole to the cat.
[3] A 15 foot tall flagpole is mounted vertically (to the Earth) along a sloped road.
When the angle of elevation of the sun is 37°, the flagpole's shadow is 35 foot long downhill. Find the angle of inclination of the road.
[4] Write vectors \vec{d}, \vec{e} and \vec{f} in terms of vectors \vec{a}, \vec{b} and \vec{c} in the diagram on the right.
[5] Consider the vector $\vec{m}=<-2,-4>$, and the vector \vec{n} with direction angle $\frac{2 \pi}{3}$ such that $\|\vec{n}\|=8$.

[a] Find a unit vector perpendicular to \vec{m}. (Do NOT use decimal approximations.)
[b] Find the direction angle of \vec{m}. (Your answer should be in radians, rounded to 2 decimal places.)
[c] Write $2 \vec{n}-\vec{m}$ as a linear combination of \vec{i} and \vec{j}. (Do NOT use decimal approximations.)
[d] Find a vector of magnitude 10 in the same direction as \vec{m}. (Do NOT use decimal approximations.)
[6] Consider the vectors $\vec{f}=-5 \vec{j}$ and $\vec{g}=-\vec{i}-3 \vec{j}$.
[a] Find the angle between \vec{f} and \vec{g}. (Your answer should be in radians, rounded to 2 decimal places.)
[b] Write \vec{f} as the sum of 2 vectors, one parallel to \vec{g} and one perpendicular to \vec{g}. (Do NOT use decimal approximations.)
[c] If the terminal point of \vec{g} is $(-7,4)$, find the initial point.
[d] If $\vec{h}=a \vec{i}+(a-5) \vec{j}$ is parallel to \vec{g}, find the value of a.
[e] If $\vec{e}=7 \vec{i}+c \vec{j}$ is perpendicular to \vec{g}, find the value of C.
[7] Let P be the point $(-5,-2)$. Let Q be the point $(4,2)$. Let R be the point $(-3,4)$.
Let \vec{u} be the vector with initial point R and terminal point Q.
Let \vec{w} be the vector with initial point P and terminal point R.
[a] Write \vec{u} in component form.
[b] Write \vec{w} as a linear combination of \vec{i} and \vec{j}.
[c] Find the magnitude of \vec{W}. (Do NOT use decimal approximations.)
[d] Find a unit vector in the opposite direction as \vec{w}. (Do NOT use decimal approximations.)
[e] Find a vector of magnitude 6 perpendicular to \vec{u}. (Do $\underline{\text { NOT }}$ use decimal approximations.)
[f] If $\|\vec{v}\|=3$, and the angle between \vec{u} and \vec{v} is 2 radians, find $\vec{u} \cdot \vec{v}$. (Round your answer to 2 decimal places.)
[g] Find $\angle Q R P$. (Round your answer to 2 decimal places.)
[h] If a force represented by the vector $4 \vec{i}-5 \vec{j}$ is applied to an object as it moves from Q to P, find the work done.
[8] A mass of 25 kg is suspended motionless in mid air by two forces with direction angles 60° and 150° respectively. Find the magnitudes of the forces.
[9] You wish to reach a point 140 miles on a bearing of 276° from home.
Due to weather conditions, you instead travel 125 miles on a bearing of 291°.
How far, and on what bearing, must you now travel to reach your destination ?
[10] A warehouse worker is pulling a pallet across the floor using a strap.
The strap is 3 meters long and the worker's hand is 1 meter above the ground.
Find the work done if the worker exerts a force of 40 newtons along the strap and pulls the pallet 4 meters.

